SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rayner Nigel W.) ;pers:(Morris Andrew D);pers:(Tuomilehto Jaakko)"

Search: WFRF:(Rayner Nigel W.) > Morris Andrew D > Tuomilehto Jaakko

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Palmer, Nicholette D, et al. (author)
  • A genome-wide association search for type 2 diabetes genes in African Americans.
  • 2012
  • In: PloS one. - San Francisco : Public Library of Science (PLoS). - 1932-6203. ; 7:1, s. e29202-
  • Journal article (peer-reviewed)abstract
    • African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
  •  
2.
  • Shungin, Dmitry, et al. (author)
  • New genetic loci link adipose and insulin biology to body fat distribution.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 187-378
  • Journal article (peer-reviewed)abstract
    • Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
  •  
3.
  • Locke, Adam E, et al. (author)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Journal article (peer-reviewed)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
4.
  • Mahajan, Anubha, et al. (author)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Journal article (peer-reviewed)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
5.
  • Scott, Robert A., et al. (author)
  • An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans
  • 2017
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:11, s. 2888-2902
  • Journal article (peer-reviewed)abstract
    • To characterize type 2 diabetes (T2D)-associated variation across the allele frequency spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D case and 132,532 control subjects of European ancestry after imputation using the 1000 Genomes multiethnic reference panel. Promising association signals were followed up in additional data sets (of 14,545 or 7,397 T2D case and 38,994 or 71,604 control subjects). We identified 13 novel T2D-associated loci (P < 5 x 10(-8)), including variants near the GLP2R, GIP, and HLA-DQA1 genes. Our analysis brought the total number of independent T2D associations to 128 distinct signals at 113 loci. Despite substantially increased sample size and more complete coverage of low-frequency variation, all novel associations were driven by common single nucleotide variants. Credible sets of potentially causal variants were generally larger than those based on imputation with earlier reference panels, consistent with resolution of causal signals to common risk haplotypes. Stratification of T2D-associated loci based on T2D-related quantitative trait associations revealed tissue-specific enrichment of regulatory annotations in pancreatic islet enhancers for loci influencing insulin secretion and in adipocytes, monocytes, and hepatocytes for insulin action-associated loci. These findings highlight the predominant role played by common variants of modest effect and the diversity of biological mechanisms influencing T2D pathophysiology.
  •  
6.
  • Scott, Robert A., et al. (author)
  • Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways
  • 2012
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:9, s. 991-1005
  • Journal article (peer-reviewed)abstract
    • Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.
  •  
7.
  • Zeggini, Eleftheria, et al. (author)
  • Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes
  • 2008
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 40:5, s. 638-645
  • Journal article (peer-reviewed)abstract
    • Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D)(1-11). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and similar to 2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P=5.0 x 10(-14)), CDC123-CAMK1D (P=1.2 x 10(-10)), TSPAN8-LGR5 (P=1.1 x 10(-9)), THADA (P=1.1 x 10(-9)), ADAMTS9 (P=1.2 x 10(-8)) and NOTCH2 (P=4.1 x 10(-8)) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7
Type of publication
journal article (7)
Type of content
peer-reviewed (7)
Author/Editor
Wareham, Nicholas J. (7)
McCarthy, Mark I (7)
Langenberg, Claudia (7)
Boehnke, Michael (7)
Mohlke, Karen L (7)
show more...
Thorleifsson, Gudmar (7)
Stefansson, Kari (7)
Palmer, Colin N. A. (7)
Collins, Francis S. (7)
Grallert, Harald (7)
Lindgren, Cecilia M. (7)
Rayner, Nigel W. (7)
Groop, Leif (6)
Lind, Lars (6)
Kuusisto, Johanna (6)
Laakso, Markku (6)
Thorsteinsdottir, Un ... (6)
Gieger, Christian (6)
Barroso, Ines (6)
Hattersley, Andrew T (6)
Froguel, Philippe (6)
Luan, Jian'an (6)
Loos, Ruth J F (6)
Prokopenko, Inga (6)
Frayling, Timothy M (6)
Jackson, Anne U. (6)
Chines, Peter S. (6)
Steinthorsdottir, Va ... (6)
Morris, Andrew P. (6)
Stringham, Heather M (6)
Bergman, Richard N (6)
Lyssenko, Valeriya (5)
Salomaa, Veikko (5)
van Duijn, Cornelia ... (5)
Hamsten, Anders (5)
Scott, Robert A (5)
Qi, Lu (5)
Abecasis, Goncalo R. (5)
Mahajan, Anubha (5)
Metspalu, Andres (5)
Kovacs, Peter (5)
Thorand, Barbara (5)
Illig, Thomas (5)
Boehm, Bernhard O. (5)
Stumvoll, Michael (5)
Perry, John R.B. (5)
Yengo, Loic (5)
Doney, Alex S. F. (5)
show less...
University
Uppsala University (6)
Lund University (6)
Umeå University (5)
Karolinska Institutet (4)
University of Gothenburg (2)
Högskolan Dalarna (2)
show more...
Stockholm University (1)
show less...
Language
English (7)
Research subject (UKÄ/SCB)
Medical and Health Sciences (6)
Natural sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view